გალაქტიკა

თავისუფალი ქართულენოვანი ენციკლოპედია ვიკიპედიიდან
გადასვლა: ნავიგაცია, ძიება
Under contruction icon-red.svg ამ სტატიას ამჟამად აქტიურად არედაქტირებს Hubble.

გთხოვთ, ნუ შეიტანთ მასში ცვლილებებს, სანამ ეს განცხადება არ გაქრება. წინააღმდეგ შემთხვევაში, შესაძლოა, მოხდეს რედაქტირების კონფლიქტი.
ამ შეტყობინების განთავსების თარიღია 2014 წლის 15 აგვისტო და იგი მხოლოდ ერთი კვირა შეიძლება დარჩეს სტატიაში.


მომხმარებლის სახელის და თარიღის ავტომატურად მისათითებლად, გამოიყენეთ თარგი {{subst:L}}

NGC 4414 - ტიპური სპირალური გალაქტიკა ბერენიკეს თმების თანავარსკვლავედში. მისი დიამეტრი, დაახლოებით, 55 000 სინათლის წელიწადია და დედამიწიდან 60 მილიონი სინათლის წლითაა დაშორებული.

გალაქტიკა - გრავიტაციულად დაკავშირებული მასიური სისტემა, რომელიც შეიცავს ვარსკვლავებს, ვარსკვლავურ ნარჩენებს, გაზისა და მტვრის ვარსკვლავთშორის სივრცესა და ბნელ მატერიას - მნიშვნელოვან, მაგრამ თითქმის უცნობ კომპონენტს.[1][2] სიტყვა გალაქტიკა ბერძნულიდანაა წარმოებული „γαλαξίας“ (იკითხება გალაქსია) და ნიშნავს „რძიანს“. ამიტომაც ინგლისურად ჩვენს გალაქტიკას „რძიან გზას“ უწოდებენ, ხოლო ქართულში მას, ძირითადად, „ირმის ნახტომად“ მოიხსენიებენ. გალაქტიკების მრავალფეროვნება იწყება ჯუჯებით, რომლებიც 10 მილიონამდე (107) ვარსკვლავს შეიცავს, და მთავრდება გიგანტებით, რომელთა შემადგენლობაში 100 ტრილიონი (1014) ვარსკვლავი შედის.[3] თითოეული ვარსკვლავი საკუთარი გალაქტიკის მასის ცენტრის ირგვლის მოძრაობს.

გალაქტიკები პლანეტების, ვარსკვლავების, ვარსკვლავთგროვებისა და გარკვეული ტიპის ვარსკვლავთშორისი ღრუბლების სხვადასხვა რაოდენობას შეიცავს. ამ ობიექტებს შორის არის კოსმოსური სხივების, გაზისა და მტვრის მეჩხერი ვარსკვლავთშორისი სივრცე. უმეტეს გალაქტიკათა ცენტრში ზემასიური შავი ხვრელი ბინადრობს. თანამედროვე მოსაზრების მიხედვით, ზემასიური შავი ხვრელი გალაქტიკის აქტიური ბირთვის ძირითადი მომმარაგებელია. ცნობილია, რომ „ირმის ნახტომი“ სულ ცოტა ერთ ასეთ ობიექტს შეიცავს.[4]

ისტორიულად, გალაქტიკები კატეგორიებად იყო დაყოფილი მათი ხილული ფორმების მიხედვით, რომელსაც ჩვეულებრივ ვიზუალურ მორფოლოგიას უწოდებენ. გავრცელებული ფორმა არის ელიფსური გალაქტიკა,[5] რომელსაც ელიფსის ფორმის სინათლის მოხაზულობა აქვს. სპირალური გალაქტიკები დისკოს ფორმისაა მტვრიანი, მრუდე მკლავებით. უჩვეულო ფორმისა და უსწორომასწორო გალაქტკებს არაწესიერი გალაქტიკები ეწოდება[6] და ჩვეულებრივ წარმოიქმნება მეზობელი გალაქტიკების გრავიტაციული მიზიდულობის შეწყვეტით. ასეთი ურთიერთქმედება ერთმანეთთან ახლოს მდებარე გალაქტიკებს შორის, რომელიც საბოლოოდ შეჯახებით მთავრდება, ზოგჯერ იწვევს ვარსკვლავების წარმოქმნის შესამჩნევად ზრდად შემთხვევებს.

ხილულ სამყაროში 170 მილიარდზე მეტი გალაქტიკაა.[7] გალაქტიკათა უმეტესობის დიამეტრი 1000-დან 100 000 პარსეკამდეა და ერთმანეთისგან მილიონობით პარსეკის (ან მეგაპარსეკი) მანძილითაა დაშორებული. გალაქტიკათშორისი სივრცეში (სივრცე გალაქტიკებს შორის) გათხელებული გაზია, რომლის საშუალო სიმჭიდროვე კუბურ მეტრზე ერთი ატომია. გალაქტიკათა უმეტესობა არც სრულიად შემთხვევითაა დალაგებული, არც სრულიად განსაზღვრული წყებათა ერთობლიობით, რომელსაც გალაქტიკათა ჯგუფები ან გროვები ეწოდება, რომელიც, მეორე მხრივ, უფრო დიდ ზეგროვებს წარმოქმნის. უდიდეს მასშტაბებზე ეს გაერთიანებები დალაგებულია ფილამენტებად და ქსოვილებად, რომლებიც გარშემორტყმულია უზამაზარი ვოიდებით (სიცარიელით).[8]

ეტიმოლოგია[რედაქტირება]

„ირმის ნახტომის“ რკალი პარანალის ობსერვატორიის თავზე.[9]

სიტყვა „გალაქტიკა“ ბერძნულიდანაა წარმოებული ჩვენი გალაქტიკისთვის: „γαλαξίας“ („რძიანი“) ან kyklos ("წრე") galaktikos („რძიანი“).[10] რასაკვირველია, ეს სახელი მისი გარეგნობის გამო შეერქვა. ბერძნულ მითოლოგიაში, მოკვდავი ქალისგან შეძენილი ვაჟი - ჩვილი ჰერაკლე ზევსმა მძინარე ჰერას მკერდზე მიუწვინა, რა დროსაც ჩვილმა მისი ღვთიური რძე დალია, რის შედეგადაც იგი უკვდავი გახდა. ჰერას მაშინ გამოეღვიძა, როდესაც ჰერაკლე მის ძუძუს წოვდა; ჰერა მიხვდა, რომ საკუთარი რძით ის უცნობ ბავშვს კვებავდა. მან ჩვილი სასწრაფოდ მოიშორა მკერდიდან, რა დროსაც მისი რძის შხეფები ღამის ცას შეესხა, რამაც ბუნდოვანი სინათლის ზოლები წარმოქმნა, რომელსაც „რძიანი გზა“ უწოდეს.[11][12]

ასტრონომიულ ლიტერატურაში დიდ ასოზე დაწყებული სიტყვა „Galaxy“ ჩვენი გალაქტიკის, „ირმის ნახტომის“, აღსანიშნად გამოიყენება, რათა არ აგვერიოს სხვა მილიარდობით გალაქტიკაში. ინგლისური ტერმინი „Milky Way“ ჩოსერის ერთ მოთხრობას უკავშირდება:

"See yonder, lo, the Galaxyë
 Which men clepeth the Milky Wey,
 For hit is whyt."
ჯეფრი ჩოსერი. დიდების სახლი, 1380.[10]

როცა უილიამ ჰერშელმა 1786 შექმნა ღრმა ციური სხეულების კატალოგი, მან გამოიყენა სახელი „სპირალური ნისლეული“ გარკვეული ობიექტებისთვის, როგორიცაა M31 (ანდრომედას გალაქტიკა). შემდეგ ეს აღიარებულ იქნა, როგორც ვარსკვლავების უზარმაზარი თავმოყრა, როცა ამ ობიექტებამდე ნამდვილი მანძილის დადგენა დააფასეს, შემდეგ ის მოიხსენიეს, როგორც კუნძულისებრი სამყაროები. თუმცა, იმ დროს სიტყვა „სამყაროს“ მნიშვნელობა ესმოდათ, როგორც არსებობის მთლიანობა, ამიტომ ეს გამოთქმა ხმარებიდან გამოვიდა და ამის ნაცვლად ამ ობიექტებს გალაქტიკები დაერქვა.[13]

ნომენკლატურა[რედაქტირება]

ათობით ათასი გალაქტიკა კატალოგშია შეტანილი. მხოლოდ მათმა მცირე რიცხვმა მიიღო განსაკუთრებული სახელი, როგორიცაა ანდრომედა, მაგელანის დიდი ნისლეული, მორევის გალაქტიკა და სომბრეროს გალაქტიკა. ასტრონომები რამდენიმე გარკვეულ კატალოგზე მუშაობენ: მესიეს კატალოგი, NGC (ახალი საერთო კატალოგი - New General Catalogue), IC (ინდექსკატალოგი - Index Catalogue), CGCG (გალაქტიკებისა და გალაქტიკების გროვების კატალოგი - Catalogue of Galaxies and of Clusters of Galaxies), MCG (გალაქტიკების მორფოლოგიური კატალოგი - Morphological Catalogue of Galaxies) და UGC (უფსალას გალაქტიკების საერთო კატალოგი). ყველა კარგად ნაცნობი გალაქტიკა ერთ ან მეტ კატალოგში ჩნდება, ოღონდ სხვადასხვა სახელებით. მაგალითად, „მესიე 109“ სპირალური სისტემაა, რომელსაც ნომერი 109 აქვს მესიეს კატალოგში. ასევე აქვს სხვა კოდებიც: NCG3992, UGC6937, CGCG 269-023, MCG +09-20-044 და PGC 37617.

შორეული გალაქტიკა აბელ 2744, რომელიც გადაღებულია ჰაბლის კოსმოსური ტელესკოპით.[15]

მეცნიერებაში ყველაზე სწავლებად ობიექტებზე სახელების დარქმევა აუცილებელია, ყველაზე პატარებზეც კი. ბელგიელმა ასტროფიზიკოსმა ჯერარდ ბოდიფემ და კლასიკოსმა მიშელ ბერგერმა შექმნეს ახალი კატალოგი (CNG - Catalogue of Named Galaxies - სახელდარქმეული გალაქტიკების კატალოგი),[16] რომელშიც კარგად ცნობილი ათასობით გალაქტიკა ლათინურადაა მოცემული მრავალმნიშვნელოვანი, თვალსაჩინო სახელებით[17] ბინომიალურ ნომენკლატურასთან შეთანხმებით, რომელიც გამოიყენება სხვა მეცნიერებებში, როგორებიცაა ბიოლოგია, ანატომია, პალეონტოლოგია და ასტრონომიის სხვადასხვა დარგი, მაგალითად მარსის გეოგრაფია. ამის გაკეთების ერთ-ერთი არგუმენტი ისაა, რომ ეს მიმზიდველი ობიექტები უფრო მეტს იმსახურებს, ვიდრე რთულ და მოსაწყენ კოდებს. მაგალითად, ბოდიფემ და ბერგერმა არაფორმალური, თვალსაჩინო სახელი „Callimorphus Ursae Majoris“ დახურული გალაქტიკა „მესიე 109-ის“ აღსანიშნად, რომელიც დიდი დათვის (Ursa Major) თანავარსკვლავედში მდებარეობს.

დაკვირვებათა ისტორია[რედაქტირება]

იმის გააზრება, რომ გალაქტიკაში ვცხოვრობთ და, ფაქტობრივად, რომ კიდევ მრავალი სხვა გალაქტიკაა სამყაროში, პარალელს ავლებს აღმოჩენებზე, რომლებიც „ირმის ნახტომსა“ და ღამის ცაზე არსებულ სხვა ნისლეულებზე გაკეთდა.

ირმის ნახტომი[რედაქტირება]

Searchtool-80%.png მთავარი სტატია : ირმის ნახტომი.
ირმის ნახტომის გალაქტიკის ცენტრი

ბერძენმა ფილოსოფოსმა დემოკრიტემ (ძვ.წ. 450-370) ივარაუდა, რომ ღამის ცაზე არსებული კაშკაშა რკალი, რომელსაც „რძიანი გზა“ ეწოდება, შეიძლება შორეულ ვარსკვლავებს შეიცავდეს.[18] თუმცა, არისტოტელეს (ძვ.წ. 384-322) სჯეროდა, რომ „რძიანი გზის“ გამომწვევი მიზეზი იყო „ზოგიერთი ვარსკვლავის ცეცხლოვანი ღრმად ამოსუნთქვის აალება, რომლებიც უზარმაზარი, ურიცხვი და ერთმანეთთან ახლოს მყოფი იყო“ და რომ “აალება ატმოსფეროს ზედა ნაწილში ხდება - მსოფლიოს რეგიონში, რომელიც უწყვეტია ზეციური მოძრაობებით“.[19] ნეოპლატონისტ ფილოსოფოსი ოლიმპიოდორ უმცროსი (495-570 ახ.წ.) მეცნიერულად კრიტიკულად უყურებდა ამ შეხედულებას. მისი თქმით, თუ „რძიანი გზა“ სუბლუნარული (მთვარესა და დედამიწას შორის მოთავსებული) იყო, მაშინ ის უნდა გამოჩენულიყო განსხვავებულად სხვადასხვა დროსა და ადგილიდან, და მას უნდა ჰქონოდა პარალაქსი, რომელიც სინამდვილეში არ აქვს. მისი შეხედულებით, „რძიანი გზა“ ღვთაებრივი იყო. ეს მოსაზრება მოგვიანებით ისლამურ სამყაროში ძალზე გავლენიანი გახდა.[20]

მოჰანი მოჰამედის თანახმად, არაბმა ასტრონომმა ალჰაზენმა (965-1037) პირველად სცადა, დაკვირვებოდა და გაეზომა „რძიანი გზის“ პარალაქსი[22] და მან, აქედან გამომდინარე, „დაასკვნა, რომ რადგანაც „რძიან გზას“ არ აქვს პარალაქსი, ის ძალიან შორს იყო დედამიწიდან და არ ეკუთვნოდა ატმოსფეროს“.[23] სპარსელმა ასტონომმა ალ-ბირუნიმ (973-1048) ივარაუდა, რომ „ირმის ნახტომის“ გალაქტიკა იყო “ბუნდოვანი ვარსკვლავების უთვალავი ბუნების ფრაგმენტის გროვა“.[24][25] ანდალუზიელმა ასტრონომმა იბნ ბაჯაჰმა კი ივარაუდა, რომ „ირმის ნახტომი“ შედგებოდა მრავალი ვარსკვლავისგან, რომლებიც თითქმის ერთმანეთს ეხება და უწყვეტ სურათად ჩანს სუბლუნარული მატერიისგან[19][26] გამოწვეული გარდატეხის ეფექტის გამო. თავისი დაკვირვების დასამოწმებლად კი მტკიცებულებად მოიყვანა იუპიტერისა და მარსის შეერთება ღამის ცაზე. ეს ხდება მაშინ, როცა ეს ობიექტები ერთმანეთთან ახლოსაა.[19] XIV საუკუნეში სირიაში დაბადებულმა იბნ ქაიიმ ივარაუდა, რომ „ირმის ნახტომი“ იყო „პაწაწინა ვარსკვლავების უთვალავი რაოდენობა, რომელიც თავმოყრილია ერთად უძრავი ვარსკვლავების სფეროში“.[27]

.„ირმის ნახტომის ფორმა, რომელიც უილიამ ჰერშელმა დაასკვნა ვარსკვლავების დათვლით 1785 წელს; მზის სისტემა ცენტრთან ახლოს იყო.

ის ფაქტი, რომ „ირმის ნახტომი“ უამრავ ვარსკვლავს შეიცავს, გალილეო გალილეიმ დაამტკიცა 1610 წელს, როცა მან გამოიყენა ტელესკოპი ჩვენი გალაქტიკის შესასწავლად და აღმოაჩინა, რომ მასში ურიცხვი რაოდენობის მკრთალი ვარსკვლავი შედის.[28][29] ინგლისელმა ასტრონომმა თომას რაითმა 1750 წელს თავის გამოცემაში, სახელად „სამყაროს თავდაპირველი თეორია ან ახალი ჰიპოთეზა“, ივარაუდა (სწორად), რომ გალაქტიკა შეიძლება ყოფილიყო უამრავი ვარსკვლავის, რომლებიც ერთმანეთთან გრავიტაციულადაა დაკავშირებული, მბრუნავი სხეული, მზის სისტემის მონათესავე, ოღონდ ბევრად დიდ მასშტაბებზე. წარმოქმნილი ვარსკვლავების დისკოს დანახვა ჩვენი გადმოსახედიდან (დისკოს შიგნით) შესაძლებელია, როგორც ზონარი ცაზე.[30][31] 1755 წელს ტრაქტატში იმანუელ კანტმა გულმოდგინედ დაამუშავა რაითის იდეა „ირმის ნახტომის“ სტრუქტურის შესახებ.[32]

„ირმის ნახტომის“ ფორმისა და მასში ჩვენი მზის ადგილმდებარეობის განსაზღვრა პირველად უილიამ ჰერშელმა სცადა 1785 წელს. მან დიდი სიზუსტითა და სიფრთილით დათვალა ვარსკვლავების რაოდენობა ცის სხვადასხვა რეგიონში. მან შექმნა გალაქტიკის ფორმის დიაგრამა, სადაც მზის სისტემა ცენტრთან ახლოს იყო..[33][34] დახვეწილი მიდგომით აკობ კაპტეინმა 1920 წელს მიიღო სურათი პატარა (დიამეტრი 15 კილოპარსეკი) ელიფსოიდური გალაქტიკისა, სადაც მზე ცენტრთან ახლოს იყო. განსხვავებული მეთოდი ჰარლოუ შაპლიმ გამოიყენა, რომელიც დაფუძნებული იყო სფერული გროვების დაკატალოგებაზე. ამან კი რადიკალურად განსხვავებული სურათი მიაღებინა: ბრტყელი დისკო დიამეტრით 70 კილოპარსეკი და მზე ცენტრიდან ძალიან შორს.[31] ორივე ანალიზი შეცდა იმაში, რომ უგულებელყვეს სინათლის შთანთქმა ვარსკვლავთშორისი მტვრის მიერ, რომელიც გალაქტიკურ სიბრტყეზე მდებარეობს, მაგრამ მას შემდეგ, რაც რობერტ იულიუს ტრამპლერმა გაზომა ეს ეფექტი 1930 წელს ღია გროვების შესწავლით, „ირმის ნახტომის“ თანამედროვე სურათი მივიღეთ.[35]

სხვა ნისლეულებისგან გარჩევა[რედაქტირება]

მეათე საუკუნეში სპარსელმა ასტრონომი ალ-სუფიმ ანდრომედას გალაქტიკის ყველაზე ადრეული კვლევები ჩაატარა და იგი აღწერა, როგორც „პატარა ღრუბელი“.[36] ალ-სუფიმ, რომელმაც კვლევები თავის „უძრავი ვარსკვლავების წიგნში“ გამოაქვეყნა, ასევე, აღმოაჩინა მაგელანის დიდი ნისლეული, რომელიც ხილულია იემენიდან, თუმცა არა ისპაჰანიდან. მაგელანის დიდი ნისლეული ევროპელებმა XVI საუკუნეში მაგელანის ვოიაჟამდე ვერ დაინახეს.[37][38] საიმონ მარიუსმა ანდრომედას გალაქტიკა ხელახლა აღმოაჩინა დამოუკიდებლად 1612 წელს.[36] ესენი მხოლოდ ის გალაქტიკებია, რომლებიც ადვილად შესამჩნევია შეუიარაღებელი თვალით, ამიტომ ისინი დედამიწიდან შესწავლილი პირველი გალაქტიკები იყო. თომას რაითმა 1750 წელს თავის პუბლიკაციაში, სახელად „სამყაროს თავდაპირველი თეორია ან ახალი ჰიპოთეზა“, ივარაუდა (სწორად), რომ „რძიანი გზა“ იყო ვარსკვალვების გაბრტყელებული დისკო და რომ ზოგიერთი ნისლეული, რომელიც ღამის ცაზე ჩანს, შეიძლება განცალკევებული „რძიანი გზები“ იყოს.[31][39] 1755 წელს იმანუელ კანტმა გამოიყენა ტერმინი „კუნძულისებრი სამყარო“ ამ შორეული ნისლეულების აღსაწერად.

„უზარმაზარი ანდრომედას ნისლეულის“ სურათი 1899 წელს გადაღებული. შემდგომში ეს ანდრომედას გალაქტიკა გახდა.

XVIII საუკუნის დასასრულს ჩარლზ მესიემ შეადგინა კატალოგი, რომელიც 109 ყველაზე კაშკაშა ნისლეულს (ციური სხეულები ღრუბლისებრი გარეგნობით) შეიცავდა, მის შემდეგ კი უფრო დიდი კატალოგი, რომელიც 5000 ნისლეულს შეიცავდა, უილიამ ჰერშელმა შექმნა.[31] 1845 წელს ლორდ როზემ ააგო ახალი ტელესკოპი, რამაც საშუალება მისცა, გაერჩია ელიფსური და სპირალური ნისლეულები. მან, ასევე, შეძლო ამ ნისლეულოებში ცალკეული წერტილოვანი რეგიონების დადგენა, რითაც გაამყარა კანტისეული ვარაუდი.[40]

1912 წელს ვესტო სლიფერმა ყველაზე კაშკაშა სპირალური ნისლეულების სპექტროგრაფიული კვლევები ჩაატარა, რათა განესაზღვრა, იყო თუ არა ისინი შედგენილი იმ ქიმიური ელემენტებით, რაც მოსალოდნელი იყო პლანეტარულ სისტემაში. თუმცა, სლიფერმა აღმოაჩინა, რომ სპირალურ ნისლეულებს მაღალი წითელი წანაცვლება ჰქონდა, რაც იმაზე მიუთითებდა, რომ ნისლეულები იმ სიჩქარეზე სწრაფად მოძრაობდა, ვიდრე „ირმის ნახტომის“ გრავიტაციისგან თავის დასაღწევადაა საჭირო (კოსმოსური სიჩქარე; მაგალითად, დედამიწის გრავიტაციული ველისგან თავის დასაღწევად საჭიროა 8 კმ/წმ, ხოლო შავი ხვრელიდან - სინათლის სიჩქარეც კი არაა საკმარისი). აქედან გამომდინარე, ეს ნისლეულები „ირმის ნახტომთან“ გრავიტაციულად არ იყო დაკავშირებული და შეუძლებელი იყო, გალაქტიკის ნაწილი ყოფილიყო.[41][42]

1845 წელს ლორდ როზეს მიერ გაკეთებული „მესიე 51-ის“ მონახაზი. მას შემდეგ „მორევის გალაქტიკა“ ეწოდა.

1917 წელს ჰებერ კარტისმა ზეახალი S Andromedae დააფიქსირა „უზარმაზარ ანდრომედას ნისლეულში“. ფოტოგრაფიული ჩანაწერების თვალიერებისას მან კიდევ 11 ზეახალი იპოვა. კარტისმა შენიშნა, რომ ეს ზეახლები, საშუალოდ, 10 ვარსკვლავიერი სიდიდით მკრთალი იყო, ვიდრე ისინი, რომლებიც ჩვენ გალაქტიკაში ხდებოდა. შედეგად, მან წამოაყენა ვარაუდი, რომ მანძილი 150 000 პარსეკი იყო. ის გახდა ე.წ. „კუნძულისებრი სამყაროების“ დამცველი, რომლის მიხედვითაც სპირალური გალაქტიკები სინამდვილეში დამოუკიდებელი გალაქტიკებია.[43]

1920 წელს ე.წ. „დიდი დებატები“ გაიმართა ჰარლოუ შაპლისა და ჰებერ კარტისს შორის „ირმის ნახტომის“, სპირალური ნისლეულებისა და სამყაროს განზომილებების ბუნების შესახებ. თავისი განცხადების მხარდასაჭერად, რომ „უზარმაზარი ანდრომედას ნისლეული“ გარეშე გალაქტიკა იყო, კარტისმა აღნიშნა, რომ ბნელი ბილიკების გარეგნობა „ირმის ნახტომში“ არსებულ მტვრის ღრუბლებს წააგავს, ასევე შესამჩნევი დოპლერის წანაცვლება. [44]

საკითხი საბოლოოდ 1920-იან წლებში გადაწყდა. 1922 წელს ესტონელმა ასტრონომმა ერნესტ იოპიკმა მანძილის გაზომვის ახალი მეთოდი შემოიტანა, რითაც მხარი დაუჭირა თეორიას, რომ ანდრომედას ნისლეული სინამდვილეში შორეული გალაქტიკა იყო.[45] უილსონის მთაზე არსებული 100 ინჩიანი (250 სმ.) ტელესკოპით ედუინ ჰაბლმა შეძლო, დაენახა ზოგიერთი სპირალური ნისლეულის გარე ნაწილები, როგორც ცალკეული ვარსკვლავების შეჯგუფება და, ასევე, აღმოაჩინა რამდენიმე ცვალებადი ცეფეიდი, აქედან გამომდინარე, ამან საშუალება მისცა მას, მანძილი განესაზღვრა ნისლეულებამდე: ისინი ზედმეტად შორს იყო იმისათვის, რომ „ირმის ნახტომის“ ნაწილი ყოფილიყო.[46] 1936 წელს ჰაბლმა შექმნა გალაქტიკების კლასიფიკაციის სისტემა, რომელიც დღესაც გამოიყენება. მას ჰაბლის მიმდევრობა ეწოდება..[47]

თანამედროვე კვლევა[რედაქტირება]

ტიპური სპირალური გალაქტიკის ბრუნვითი სიმრუდე: ნაწინასწარმეტყველებია ხილულ მატერიასა (A) და დაკვირვებულზე (B) დაფუძნებით. მანძილი არის გალაქტიკის ბირთვიდან.

1944 წელს ჰენდრიკ ვან დე ჰულსტმა იწინასწარმეტყველა მიკროტალღური გამოსხივება 21 სმ-ის სიგრძის ტალღაში, რომელიც მიიღება ვარსკვლავთსორისი ატომური წყალბადის გაზისგან.[48] ეს გამოსხივება 1951 იქნა შესწავლილი. გამოსხივებამ უზრუნველყო „ირმის ნახტომის“ გაუმჯობესებული შესწავლა, რადგანაც მასზე მტვრის შთანთქმა არ ახდენს გავლენას და მისი დოპლერის წანაცვლების გამოყენება შესაძლებელია გალაქტიკაში არსებული გაზის მოძრაობის ტრაექტორიის განსაზღვრა. ამ დაკვირვებებმა გალაქტიკის ცენტრში მბრუნავი ბარის სტრუქტურის პოსტულაცია წარმოქმნა.[49] გაუმჯობესებული რადიოტელესკოპებით წყალბადის გაზის კვალის დაფიქსირება სხვა გალაქტიკებშიცაა შესაძლებელი.

მეორე ყველაზე შორეული გალაქტიკა: UDFy-38135539

1970-იანებში გალაქტიკებში არსებულ გაზის ბრუნვითი სიჩქარის კვლევაში, რომელიც ვერა რუბინს ეკუთვნოდა, აღმოჩნა, რომ მთლიანი ხილული მასა (ვარსკვლავებიდან და გაზებიდან) ზუსტად არ ემთხვევა მბრუნავი გაზის სიჩქარეს. გალაქტიკის მოძრაობის ეს პრობლემა იხსნება დიდი რაოდენობით უხილავი ბნელი მატერიის არსებობით.[50][51]

1990-იანების დასაწყისში ჰაბლის კოსმოსურმა ტელესკოპმა გაუმჯობესებული დაკვირვებები დაიწყო. სხვა მრავალთა შორის, მან დაამტკიცა, რომ ჩვენს გალაქტიკაში დაკარგული ბნელი მატერია (არსებითად) შეუძლებელი იქნებოდა, რომ მკრთალ და პატარა ზომის ვარსკვლავებში ყოფილიყო.[52] ჰაბლის ღრმა ხედმა - ცის შედარებით ცარიელი ნაწილის უკიდურესად დიდი დაყოვნებით მიღებული ფოტო - უზრუნველყო მტკიცებულება, რომ 125 მილიარდზე მეტი გალაქტიკა არსებობს სამყაროში.[53] გაუმჯობესებულმა ტექნოლოგიამ, რომელიც ადამიანის თვალისთვის უხილავ სპექტრში ხედავს (რადიოტელესკოპები, ინფრაწითელი კამერები და რენტგენის ტელესკოპები), მეცნიერებს საშუალება მისცა, აღმოეჩინათ ის გალაქტიკები, რომელთაც ჰაბლი ვერ ამჩნევდა. გალაქტიკურმა დაკვირვებებმა მრავალი ახალი გალაქტიკა აღმოაჩინა „გაუქმების ზონაში“ - ცის რეგიონი, რომელიც „ირმის ნახტომის“ მიერაა დაბლოკილი.[54]

ტიპები და მორფოლოგია[რედაქტირება]

გალაქტიკათა ტიპები ჰაბლის კლასიფიკაციის სქემის მიხედვით. E ნიშნავს ელიფსური ტიპის გალაქტიკას; S სპირალია; SB დახურული სპირალური გალაქტიკაა. [note 1]

არსებობს გალაქტიკათა სამი ძირითადი ტიპი: ელიფსური, სპირალური და არაწესიერი. გალაქტიკათა ტიპების ოდნავ უფრო ფართო აღწერა, რომელიც დაფუძნებულია მათ გარეგნობაზე, „ჰაბლის მიმდევრობით“ არის მოცემული. რადგანაც „ჰაბლის მიმდევრობა“ მთლიანად დაფუძნებულია ვიზუალურ მორფოლოგიურ ტიპზე, ის არ ითვალისწინებს გალაქტიკათა გაკრვეულ მნიშვნელოვან მახასიათებლებს, როგორიცაა ვარსკვლავთწარმოქმნის ტემპი (მაღალი ტემპის ვარსკვლავთწარმოქმნადობის გალაქტიკებში) და აქტიურობა ბირთვში (აქტიურ გალაქტიკებში).[6]

ელიფსური[რედაქტირება]

ჰაბლის კლასიფიკაციის სისტემა ელიფსურ გალაქტიკებს მათ ელიფსურობაზე დაფუძნებით აფასებს: დაწყებული EO-თი, რომელიც თითქმის სფერულია, და დამთავრებული E7-ით, რომელიც ძალიან წაგრძელებულია. ამ გალაქტიკებს ელიფსოიდური მოხაზულობა აქვს, რის გამოც მათი გარეგობა ელიფსურია, ხედვის კუთხის მიუხედავად. მათი გარეგნობა მცირე სტრუქტურას გვიჩვენებს და მათ ჩვეულებისამებრ შედარებით მცირე ვარსკვლავთშორისი მატერია აქვს. ამ გალაქტიკებს, ასევე, აქვს ღია გროვების მცირე ნაწილი და ახალი ვარსკვლავების წარმოქმნის შემცირებული ტემპი. სამაგიეროდ ასეთი ტიპის გალაქტიკებში დომინანტობს ხნიერი, უფრო განვითარებული ვარსკვლავები, რომლებიც გრავიტაციის საერთო ცენტრის გარშემო მოძრაობს შემთხვევითი მიმართულებებით. ეს ვარსკვლავები მძიმე ელემენტებს მცირე რაოდენობით შეიცავს, რადგან ვარსკვლავთწარმომქმნელი პროცესები წყდება თავდაპირველი ანთებისას. ამ თვალსაზრისით მათ რაღაც მსგავსება აქვს ბევრად პატარა სფერულ გროვებთან.[55]

უდიდესი გალაქტიკები გიგანტური ელიფსურებია. თანამედროვე წარმოდგენით, მრავალი ელიფსური გალაქტიკა წარმოიქმნება გალაქტიკების ურთიერთქმედებით, რის შედეგადაც ხდება შეჯახება და შერწყმა. მათ უზარმაზარ ზომამადე შეუძლიათ გაზრდა (მაგალითად, სპირალურ გალაქტიკებთან შედარებით) და გიგანტური გალაქტიკები ხშირად უზარმაზარი გალაქტიკათა გროვების ბირთვთან დაიმზირება.[56] მაღალი ტემპის ვარსკვლავთწარმოქმნადობის გალაქტიკები ასეთი გალაქტიკური შეჯახების შედეგია, რომელიც შედეგად იძლევა ელიფსური გალაქტიკის ფორმირებას.[55]

სპირალური[რედაქტირება]

მორევის გალაქტიკა (მარცხნივ) - ღია სპირალური გალაქტიკის ნათელი მაგალითი.

სპირალური არის ის გალაქტიკა, რომლის ხილული ვარსკვლავები სპირალურად ეხვევა ტრიალას ფორმით. მიუხედავად იმისა, რომ ასეთ გალაქტიკებში მოთავსებული ვარსკვლავები და სხვა ხილული მატერია ძირითადად სიბრტყეზე მდებარეობს, სპირალური გალაქტიკის მასის უმეტესობა ბნელი მატერიის სფერულ ჰალოზე მოდის, რომელიც ხილული ნაწილის გაღმა იშლება.[57]

სპირალური გალაქტიკები მოიცავს ვარსკვლავების მბრუნავ დისკოსა და ვარსკვლავთშორის სივრცეს, უმეტესად ხნიერი ვარსკვლავების ცენტრალური ბალჯით (ამოზნექილობა). ბალჯიდან გარეთ მიმართული მკლავები შედარებით კაშკაშაა. ჰაბლის კლასიფიკაციის სქემაში სპირალური გალაქტიკები დაჯგუფებულია S ტიპად, რომელსაც ასო (a, b ან c) მოსდევს. ეს კი მიუთითებს სპირალური მკლავების სიმჭიდროვესა და ცენტრალური ბალჯის ზომაზე. Sa ტიპის გალაქტიკას მჭიდრო „ჭრილობა“ აქვს, უხეიროდ გამოკვეთილი მკლავები და შედარებით დიდი ბირთვის რეგიონს ფლობს. მეორე უკიდურესობაა Sc გალაქტიკა, რომელსაც აქვს ღია, კარგად გამოკვეთილი მკლავები და პატარა ბირთვის რეგიონი.[58] უხეიროდ გამოკვეთილი მკლავების მქონე გალაქტიკას ზოგჯერ „ფლოკულენტულ სპირალურ გალაქტიკას“ უწოდებენ.[59]

ზოგი სპირალური გალაქტიკა სქელი და ბალჯიანია, ხოლო ზოგი კი ბრტყელი დისკოა, რადგან ასეთი ობიექტები ძალიან სწრაფად ბრუნავს.[60]

NGC 1300 - დახურული სპირალური გალაქტიკის ნათელი მაგალითი.

სპირალურ გალაქტიკებში სპირალურ მკლავებს მიახლოებითი ლოგარითმული სპირალების ფორმა აქვს - ფორმა, რომლის თეორიულად ჩვენება შეიძლება ვარსკვლავების ერთფეროვნად მბრუნავი მასის აგზნებით. ვარსკვლავების მსგავსად სპირალური მკლავებიც ცენტრის გარშემო ბრუნავს, მაგრამ ისინი მუდმივი კუთხური სიჩქარით ბრუნავს. მეცნიერთა ვარაუდით, სპირალური მკლავები მაღალი სიმკვრივის მატერიის ადგილია, ამას კი ზოგჯერ „სიმკვრივის ტალღებს“ უწოდებენ.[61] რადგანაც ვარსკვლავები მკლავის გავლით მოძრაობს, თითოეული ვარსკვლავური სისტემის სიჩქარე მაღალი სიმკვრივის რეგიონის გრავიტაციული ძალის გავლენით იცვლება (სიჩქარე ჩვეულებრივ მაშინ უბრუნდება, როცა ვარსკვლავები მკლავის სხვა მხარეს გადავა). ეს ეფექტი ჰგავს მოძრაობის შენელების „ტალღას“ მოძრავი მანქანებით სავსე გზატკეცილზე. ეს მკლავები ხილულია, რადგან მაღალი სიმკვრივე ვარსკლავთწარმომქმნელ პროცესებს აადვილებს და, აქედან გამომდინარე, ასეთ რეგიონებში უამრავი კაშკაშა და ახალგაზრდა ვარსკვლავია.[62]

ჩვენი „ირმის ნახტომის“ გალაქტიკის ჩათვლით, სპირალური გალაქტიკების უმეტესობას სწორხაზოვანი, ვარსკვლავების ძელაკის ფორმის ჯგუფი აქვს, რომელიც იჭიმება ბირთვის ორივე მხრიდან გარეთკენ, შემდეგ ერწყმება სპირალური მკლავის სტრუქტურას.[63] ჰაბლის კლასიფიკაციის სქემაში ასეთები აღნიშნულია SB-თი, რომელსაც ასოები (a, b ან c) მოსდევს. ეს კი მიუთითებს სპირალური მკლავების ფორმაზე (იმავე წესით, როგორც ნორმალური სპირალური გალაქტიკების კატეგორიებად დაყოფისას). ნავარაუდევია, რომ გალაქტიკის ბარი დროებითი სტრუქტურაა, რომლის გამომწვევი მიზეზი „სიმკვრივის ტალღის“ ბირთვიდან გარეთკენ გამოსხივებაა ან სულაც სხვა გალაქტიკასთან გრავიტაციული ურთიერთქმედება.[64] დახურული სპირალური გალაქტიკები აქტიურია, სავარაუდოდ იმიტომ, რომ გაზი ჩაედინება ბირთვში მკლავების გასწვრივ.[65]

ჩვენი გალაქტიკა „ირმის ნახტომი“ არის დიდი დისკოს ფორმის დახურული სპირალური გალაქტიკა,[66] რომლის დიამეტრი 30 კილოპარსეკია, ხოლო სისქე - 1 კილოპარსეკი. ის შეიცავს, დაახლოებით, 200 მილიარდ (2×1011)[67] ვარსკვლავს და მისი მასა 600 მილიარდი (6×1011) მზის მასის ტოლია.[68]

სხვა მორფოლოგიები[რედაქტირება]

უჩვეულო გალაქტიკები არის გალაქტიკური წარმონაქმნები, რომლებიც უცნაურ ნიშან-თვისებებს ივითარებენ სხვა გალაქტიკებთან გრავიტაციული ურთიერქმედების გამო. ამის მაგალითი არის რგოლისებრი გალაქტიკა, რომელსაც აქვს ვარსკვლავებისა და ვარსკვლავთშორისი სივრცის რგოლისებრი სტრუქტურა, რომელიც გარს აკრავს მოშიშვლებულ ბირთვს. მეცნიერთა ვარაუდით, რგოლისებრი გალაქტიკა მაშინ წარმოიქმნება, როცა შედარებით პატარა გალაქტიკა სპირალური გალაქტიკის ბირთვისკენ ჩაივლის.[69] ასეთმა მოვლენამ შესაძლოა ანდრომედას გალაქტიკაზე მოახდინა გავლენა, რადგან მას ინფრაწითელ დიაპაზონში მრავალრგოლიანი სტრუქტურის მსგავსი ფორმა აქვს.[70]

ლინზისებრი გალაქტიკა შუალედური ფორმაა, რომელსაც ელიფსურისა და სპირალური გალაქტიკების თვისებები აქვს. ჰაბლის კლასიფიკაციით, ასეთი ობიექტების ტიპი არის S0 და მათ არასრულყოფილად გამოკვეთილი მკლავები აქვს ვარსკვლავების ელიფსური ჰალოთი (დახურულმა ლინზისებრმა გალაქტიკებმა ჰაბლის კლასიფიკაციით SB0 ტიპი მიიღო).[71]

ზემოთ ხსენებული კლასიფიკაციების დამატებით, არსებობს გალაქტიკების გარკვეული რაოდენობა, რომლის ადვილად კლასიფიცირება ელიფსურად ან სპირალურად შეუძლებელია. ასეთი ტიპის ობიექტებს არაწესიერი გალაქტიკები ეწოდება. Irr-I ტიპის გალაქტიკას რაღაც სტრუქტურა გააჩნია, მაგრამ სუფთად არ ეწყობა ჰაბლის კლასიფიკაციის სქემას. Irr-II ტიპის გალაქტიკას არანაირი არ გააჩნია სტრუქტურა, რომელიც ჰაბლის კლასიფიკაციას ჰგავს, და შეიძლება დანგრეულიც იყოს.[72] არაწესიერი (ჯუჯა) გალაქტიკების უახლოესი მაგალითებია მაგელანის ნისლეულები (იხ. მაგელანის დიდი ნისლეული)

შენიშვნები[რედაქტირება]

  1. Galaxies to the left side of the Hubble classification scheme are sometimes referred to as "early-type", while those to the right are "late-type".

სქოლიო[რედაქტირება]

  1. Sparke და Gallagher III 2000
  2. NASA Finds Direct Proof of Dark Matter. NASA (2006-08-12). წაკითხვის თარიღი: 2007-04-17.
  3. (1990) „The central galaxy in Abell 2029 – An old supergiant“. Science 250 (4980): გვ. 539–540. DOI:10.1126/science.250.4980.539. Bibcode: 1990Sci...250..539U. 
  4. Astronomers Get Closest Look Yet At Milky Way's Mysterious Core. National Radio Astronomy Observatory (2005-11-02). წაკითხვის თარიღი: 2006-08-10.
  5. UF Astronomers: Universe Slightly Simpler Than Expected“, Hubble News Desk, 2003-06-16. წაკითხვის თარიღი: 2011-03-04.  Based upon:
  6. 6.0 6.1 Near-Infrared Galaxy Morphology Atlas. California Institute of Technology. წაკითხვის თარიღი: 2007-01-09.
  7. Deutsch, David (2011). The Fabric of Reality. Penguin Books Limited, გვ. 234–. ISBN 978-0-14-196961-9. 
  8. Galaxy Clusters and Large-Scale Structure. University of Cambridge. წაკითხვის თარიღი: 2007-01-15.
  9. A Milky Arc Over Paranal“. წაკითხვის თარიღი: 10 April 2014. 
  10. 10.0 10.1 galaxy. Online Etymology Dictionary. წაკითხვის თარიღი: 2011-11-11.
  11. Waller და Hodge 2003
  12. Emblematics, Agriculture, and Mythography in The Origin of the Milky Way. Academy of Sciences of the Czech Republic. დაარქივებულია ორიგინალიდან July 20, 2006-ში. წაკითხვის თარიღი: 2007-01-05.
  13. Explore the Archer's Realm. Space.com (2005-09-02). წაკითხვის თარიღი: 2007-01-03.
  14. Harrington, J.D. (3 June 2014). NASA RELEASE 14-151 - Hubble Team Unveils Most Colorful View of Universe Captured by Space Telescope. NASA. წაკითხვის თარიღი: 4 June 2014.
  15. Distant galaxy in Hubble Frontier Field Abell 2744“. წაკითხვის თარიღი: 11 February 2014. 
  16. Bodifée G. & Berger M. (2010). CNG-Catalogue of Named Galaxies. წაკითხვის თარიღი: 2014-01-17.
  17. Contemporary Latin. წაკითხვის თარიღი: 22 January 2014.
  18. Plutarch (2006). The Complete Works Volume 3: Essays and Miscellanies. Chapter 3: Echo Library, გვ. 66. ISBN 978-1-4068-3224-2. 
  19. 19.0 19.1 19.2 Ibn Bajja. Stanford Encyclopedia of Philosophy (2007-09-28). წაკითხვის თარიღი: 2008-07-11.
  20. Heidarzadeh 2008
  21. ALMA Centre of Expertise in Portugal“. წაკითხვის თარიღი: 15 May 2014. 
  22. Mohamed 2000
  23. Popularisation of Optical Phenomena: Establishing the First Ibn Al-Haytham Workshop on Photography. The Education and Training in Optics and Photonics Conference (2005). წაკითხვის თარიღი: 2008-07-08.
  24. თარგი:MacTutor Biography
  25. Al-Biruni 2004
  26. Heidarzadeh 2008
  27. (1971) „Ibn Qayyim al-Jawziyyah: A Fourteenth Century Defense against Astrological Divination and Alchemical Transmutation“. Journal of the American Oriental Society 91 (1): გვ. 96–103 [99]. DOI:10.2307/600445. 
  28. Galileo Galilei, Sidereus Nuncius (Venice, (Italy): Thomas Baglioni, 1610), pages 15 and 16.
    English translation: Galileo Galilei with Edward Stafford Carlos, trans., The Sidereal Messenger (London, England: Rivingtons, 1880), pages 42 and 43.
  29. Galileo Galilei. University of St. Andrews (November 2002). წაკითხვის თარიღი: 2007-01-08.
  30. Thomas Wright, An Original Theory or New Hypothesis of the Universe … (London, England: H. Chapelle, 1750). From p.48: " … the stars are not infinitely dispersed and distributed in a promiscuous manner throughout all the mundane space, without order or design, … this phænomenon [is] no other than a certain effect arising from the observer's situation, … To a spectator placed in an indefinite space, … it [i.e., the Milky Way (Via Lactea)] [is] a vast ring of stars … "
    On page 73, Wright called the Milky Way the Vortex Magnus (the great whirlpool) and estimated its diameter at 8.64×1012 miles (13.9×1012 km).
  31. 31.0 31.1 31.2 31.3 Our Galaxy. George Mason University (1998-11-24). წაკითხვის თარიღი: 2007-01-04.
  32. Immanuel Kant, Allgemeine Naturgeschichte und Theorie des Himmels [Universal Natural History and Theory of the Heavens … ], (Koenigsberg and Leipzig, (Germany): Johann Friederich Petersen, 1755).
    Available in English translation by Ian Johnston at: Vancouver Island University, British Columbia, Canada
  33. William Herschel (1785) "On the Construction of the Heavens," Philosophical Transactions of the Royal Society of London, 75 : 213-266. Herschel's diagram of the galaxy appears immediately after the article's last page. See:
  34. Paul 1993
  35. (1999) „Robert Trumpler and the (Non)transparency of Space“. Bulletin of the American Astronomical Society 31 (31): გვ. 1479. Bibcode: 1999AAS...195.7409T. 
  36. 36.0 36.1 Kepple და Sanner 1998
  37. Abd-al-Rahman Al Sufi (December 7, 903 – May 25, 986 A.D.). Observatoire de Paris. წაკითხვის თარიღი: 2007-04-19.
  38. The Large Magellanic Cloud, LMC. Observatoire de Paris. წაკითხვის თარიღი: 2007-04-19.
  39. See text quoted from Wright's An original theory or new hypothesis of the Universe in (1979) Disturbing the Universe. Pan Books, გვ. 245. ISBN 0-330-26324-2. 
  40. The Earl of Rosse and the Leviathan of Parsontown. წაკითხვის თარიღი: 2007-01-04.
  41. (1913) „The radial velocity of the Andromeda Nebula“. Lowell Observatory Bulletin 1: გვ. 56–57. Bibcode: 1913LowOB...2...56S. 
  42. (1915) „Spectrographic Observations of Nebulae“. Popular Astronomy 23: გვ. 21–24. Bibcode: 1915PA.....23...21S. 
  43. Curtis (1988). „Novae in Spiral Nebulae and the Island Universe Theory“. Publications of the Astronomical Society of the Pacific 100: გვ. 6. DOI:10.1086/132128. Bibcode: 1988PASP..100....6C. 
  44. Robert Julius Trumpler. US National Academy of Sciences. წაკითხვის თარიღი: 2007-01-05.
  45. (1922) „An estimate of the distance of the Andromeda Nebula“. Astrophysical Journal 55: გვ. 406. DOI:10.1086/142680. Bibcode: 1922ApJ....55..406O. 
  46. (1929) „A spiral nebula as a stellar system, Messier 31“. Astrophysical Journal 69: გვ. 103–158. DOI:10.1086/143167. Bibcode: 1929ApJ....69..103H. 
  47. (1989) „Edwin Hubble, 1889–1953“. Journal of the Royal Astronomical Society of Canada 83 (6): გვ. 351–362. Bibcode: 1989JRASC..83..351S. წაკითხვის თარიღი: 2007-01-08. 
  48. Hendrik Christoffel van de Hulst. Sonoma State University. წაკითხვის თარიღი: 2007-01-05.
  49. (2001) „Searching for the in-plane Galactic bar and ring in DENIS“. Astronomy and Astrophysics 373 (1): გვ. 139–152. DOI:10.1051/0004-6361:20010560. arXiv: astro-ph/0104307. Bibcode: 2001A&A...373..139L. 
  50. (1983) „Dark matter in spiral galaxies“. Scientific American 248 (6): გვ. 96–106. DOI:10.1038/scientificamerican0683-96. Bibcode: 1983SciAm.248...96R. 
  51. (2000) „One Hundred Years of Rotating Galaxies“. Publications of the Astronomical Society of the Pacific 112 (772): გვ. 747–750. DOI:10.1086/316573. Bibcode: 2000PASP..112..747R. 
  52. Hubble Rules Out a Leading Explanation for Dark Matter“, Hubble News Desk, 1994-10-17. წაკითხვის თარიღი: 2007-01-08. 
  53. How many galaxies are there?. NASA (2002-11-27). წაკითხვის თარიღი: 2007-01-08.
  54. (2000) „Mapping the hidden Universe: The galaxy distribution in the Zone of Avoidance“. Publications of the Astronomical Society of Australia 17 (1): გვ. 6–12. DOI:10.1071/AS00006. arXiv: astro-ph/9910572. Bibcode: 1999astro.ph.10572K. 
  55. 55.0 55.1 Elliptical Galaxies. Leicester University Physics Department (2005). წაკითხვის თარიღი: 2006-06-08.
  56. Galaxies. Cornell University (2005-10-20). წაკითხვის თარიღი: 2006-08-10.
  57. doi:10.1111/j.1365-2966.2009.15582.x
    This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand
  58. Galaxies — The Spiral Nebulae. University of California, San Diego Center for Astrophysics & Space Sciences (2000-03-06). წაკითხვის თარიღი: 2006-11-30.
  59. Van den Bergh 1998
  60. http://phys.org/news/2014-02-fat-flat-galaxies.html
  61. Bertin და Lin 1996
  62. Belkora 2003
  63. (1999) „What is the True Fraction of Barred Spiral Galaxies?“. Astrophysics and Space Science 269/270: გვ. 427–430. DOI:10.1023/A:1017025820201. Bibcode: 1999Ap&SS.269..427E. 
  64. (2002) „Gas accretion on spiral galaxies: Bar formation and renewal“. Astronomy and Astrophysics 392 (1): გვ. 83–102. DOI:10.1051/0004-6361:20020920. arXiv: astro-ph/0206273. Bibcode: 2002A&A...392...83B. 
  65. (2002) „Circumnuclear regions in barred spiral galaxies — II. Relations to host galaxies“. Monthly Notices of the Royal Astronomical Society 337 (3): გვ. 808–828. DOI:10.1046/j.1365-8711.2002.05840.x. arXiv: astro-ph/0207258. Bibcode: 2002MNRAS.337..808K. 
  66. (2001) „Another bar in the Bulge“. Astronomy and Astrophysics Letters 379 (2): გვ. L44–L47. DOI:10.1051/0004-6361:20011487. arXiv: astro-ph/0110491. Bibcode: 2001A&A...379L..44A. 
  67. Milky Way galaxy is warped and vibrating like a drum“, UCBerkeley News, 2006-01-09. წაკითხვის თარიღი: 2006-05-24. 
  68. (1997) „Mass of the Milky Way and Dwarf Spheroidal Stream Membership“. Bulletin of the American Astronomical Society 29 (2): გვ. 1384. Bibcode: 1997AAS...19110806B. 
  69. (1994) „Ring Galaxy Evolution as a Function of "Intruder" Mass“. Bulletin of the American Astronomical Society 26: გვ. 911. Bibcode: 1994AAS...184.3204G. 
  70. European Space Agency (1998-10-14). "ISO unveils the hidden rings of Andromeda". პრეს-რელიზი. Archived from the original. You must specify the date the archive was made using the |archivedate= parameter. http://www.iso.vilspa.esa.es/outreach/esa_pr/andromed.htm წაკითხულია: 2006-05-24. 
  71. Spitzer Reveals What Edwin Hubble Missed. Harvard-Smithsonian Center for Astrophysics (2004-05-31). წაკითხვის თარიღი: 2006-12-06.
  72. Irregular Galaxies. University of Leicester (2005). წაკითხვის თარიღი: 2006-12-05.

შეცდომა ციტირებაში ტეგი <ref> სახელად „rmaa17_107“, გარკვეული <references>-ში, არ გამოიყენება წინა ტექსტში.; $2
შეცდომა ციტირებაში ტეგი <ref> სახელად „eso000503“, გარკვეული <references>-ში, არ გამოიყენება წინა ტექსტში.; $2

Commons-logo.svg
ვიკისაწყობში? არის გვერდი თემაზე: