პარაბოლა
პარაბოლა (ბერძ. παραβολή [parabolē] — „მიახლოება“) — კვეთის წირი, რომელიც მიიღება წრიული კონუსის რომელიმე მხები სიბრტყის პარალელური სიბრტყით გადაკვეთის შედეგად.
პარაბოლა შეიძლება განისაზღვროს აგრეთვე, როგორც გეომეტრიული ადგილი სიბრტყის იმ წერტილებისა, რომელთათვისაც მანძილი სიბრტყის მოცემულ წერტილამდე — პარაბოლის ფოკუსამდე — ტოლია მანძილისა რომელიმე წრფემდე — დირექტრისამდე წრფეს, რომელიც გადის ფოკუსზე დირექტრისის პერპენდიკულარულად და მიმართულია დირექტრისადან ფოკუსისაკენ, ეწოდება პარაბოლის ღერძი, ხოლო ღერძის პარაბოლასთან გადაკვეთის წერტილს — პარაბოლის წვერო. თუ ავირჩევთ კოორდინატთა სისტემას, მაშნ პარაბოლის განტოლება შემდეგნაირად გამოისახება:
- ,
სადაც არის მონაკვეთის სიგრძე. მას პარაბოლის პარამეტრს უწოდებენ. პარაბოლა მეორე რიგის წირია. სამწევრის გრაფიკი წარმოადგენს პარაბოლას.
იხილეთ აგრეთვე
[რედაქტირება | წყაროს რედაქტირება]ლიტერატურა
[რედაქტირება | წყაროს რედაქტირება]- ქართული საბჭოთა ენციკლოპედია, ტ. 7, თბ., 1984. — გვ. 672.