ელექტრული ველის დაძაბულობა: განსხვავება გადახედვებს შორის

მასალა ვიკიპედიიდან — თავისუფალი ენციკლოპედია
[შეუმოწმებელი ვერსია][შეუმოწმებელი ვერსია]
შიგთავსი ამოიშალა შიგთავსი დაემატა
ხაზი 15: ხაზი 15:
: <math>\varphi = \frac{q}{4 \pi \varepsilon_0 r}.</math>
: <math>\varphi = \frac{q}{4 \pi \varepsilon_0 r}.</math>


ამ შემთხვევაში სფერული სიმეტრიის გამო [[ეკვიპოტენციური ზედაპირი|ეკვიპოტენციური ზედაპირები]] სფეროებს წარმოადგენეს. შედეგად წარმოებული ნორმალის გასწვრივ ხდება [[წარმოებული]] რადიუსით და ვიღებს ე.წ. კულონის ველს
Так как [[эквипотенциальная поверхность|эквипотенциальные поверхности]] являются в этом случае сферами, то производная по нормали есть производная по радиусу. Таким образом мы можем прийти к так называемому кулоновскому полю:


: <math>E_r = - \frac{\partial \varphi}{\partial r}= -\frac{\partial }{\partial r } \left( \frac{q}{4 \pi \varepsilon_0 r} \right) = \frac{q}{ 4 \pi \varepsilon_0 r^2}</math>.
: <math>E_r = - \frac{\partial \varphi}{\partial r}= -\frac{\partial }{\partial r } \left( \frac{q}{4 \pi \varepsilon_0 r} \right) = \frac{q}{ 4 \pi \varepsilon_0 r^2}</math>.

22:35, 27 მარტი 2010-ის ვერსია

{{subst:ET|თარგის გამოყენების შეცდომა! ეს თარგი გამოიყენება subst-ის მეშვეობით. პრობლემის აღმოსაფხვრელად ჩაანაცვლეთ თარგი {{მუშავდება}} თარგით {{subst:მუშავდება}}.}}{{მუშავდება/ძირი|[[სპეციალური:Contributions/{{subst:REVISIONUSER}}|{{subst:REVISIONUSER}}]].|{{subst:CURRENTDAY}}|{{subst:CURRENTMONTH}}|{{subst:CURRENTYEAR}}}}

ფიზიკაში ელექტრული ველის დაძაბულობაარის ვექტორული სიდიდე რომელცი ახასიათებს ელექტრულ ველს. სიცრცის მოცემულ წერტილში მისი მნიშვნელოვბა ტოლია ამ წერტილში მოთავსებულ საცდელ მუხტზე მოქმედი ძალის ფარდობისა ამ მუხტის სიდიდეზე:

.

SI სისტემაში ელექტრული ველის დაძაბულობა იზომება / ერთეულებში.

წერტილოვანი მუხტის ელექტრული ველის დაძაბულობა

SI სისტემისთვის

ელექტრული პოტენციალის მეშვეობით ვექტორი შეიძლება გამოვსახოტ როგორც პოტენციალის გრადიენტი აღებული მინუს ნიშნით

მაგალითად წერტილოვანი მუხტისთვის კულონის კანონიდან გამომდინარე გვაქვს

ამ შემთხვევაში სფერული სიმეტრიის გამო ეკვიპოტენციური ზედაპირები სფეროებს წარმოადგენეს. შედეგად წარმოებული ნორმალის გასწვრივ ხდება წარმოებული რადიუსით და ვიღებს ე.წ. კულონის ველს

.

Используя теорему Остроградского — Гаусса

Из формулы Остроградского-Гаусса вектор можно определить, зная плотность распределения зарядов. Согласно формуле Гаусса — Остроградского, а также используя уравнение Максвелла , легко получить:

где — заряд, находящийся внутри замкнутой поверхности S, объемом V. В качестве поверхности интегрирования возьмем сферу (центральная симметрия), тогда

В силу центральной симметрии поля точечного заряда:

.

Как и следовало ожидать, результаты полностью совпали.

გაუსის ერთეულთა სისტემისთვის

ამ სისტემაში მსჯელობები ზემოთ განხილულის ანალოგიურია, განსხვავება იმაშია, რომ იცვლება პოტენციალის სახე:

,

ხოლო მაქსველის განტოლებისთვის გვექნება

და

.

შედეგად გაუსის ერთეულთა სისტემაში გვაქვს

ერთეულები

გაუსის ერთეულთა სისტემაში ელექტრული ველის დაძაბულობის ერთეულია სტატვ/სმ, ხოლო SI სისტემაში /.

იხილეთ აგრეთვე