შინაარსზე გადასვლა

ლორენც-ფაქტორი

სტატიის შეუმოწმებელი ვერსია
მასალა ვიკიპედიიდან — თავისუფალი ენციკლოპედია

ლორენც-ფაქტორი ან ლორენცის ფაქტორი არის თანამამრავლი, რომელიც გვხვდება ფარდობითობის სპეციალური თეორიის სხვადასხვა ფორმულებში. ლორენც-ფაქტორს როგორც წესი γ-თი აღნიშნავენ. ფაქტორს სახელი ეწოდა ჰოლანდიელი ფიზიკოსის ჰენდრიკ ლორენცის პატივსაცემად.[1]

ლორენც-ფაქტორი განიმარტება შემდეგი განტოლებით:

სადაც:

არის სიჩქარე,სინათლის სიჩქარის ერთეულებში;
u არის სიჩქარე გაზომილი იგივე სისტემაში, რომელშიც t დრო;
τ არის საკუთარი, ანუ თანმდევი დრო;
c არის სინათლის სიჩქარე.

ლორენც-ფაქტორი შეიძლება წარმოდგენილი იქნას შემდეგი სახის ტეილორის მწკრივის სახით როგორც:

შედარებით მცირე სიჩქარეებზე სამართლიანია შემდეგი მიახლოება

γ ≈ 1 + 1/2 β2.

ეს ტოლობა სრულდება 1% სიზუსტით v < 0.4 c (v < 120,000 კმ/წმ), და 0.1% სიზუსტით v < 0.22 c (v < 66,000 კმ/წმ).

ამ ფურმულების გამოყენებით შეიძლება იმის ჩვენება, რომ ფარდობითობის სპეციალური თეორია დადის კლასიკურ მექანიკაზე მცირე სიჩქარეებზე. მაგალითად, ფარდობითობის სპეციალური თეორიის მიხედვით სამართლიანია თანაფარდობები:

როცა γ ≈ 1 და γ ≈ 1 + 1/2 β2, ეს ტოლობები დადის კლასიკური (ნიუტონის) მექანიკის ფორმულებზე:

ლორენც-ფაქტორის ფორმულის შებრუნება გვაძლევს:

დიდ სიჩქარეებზე გვაქვს ასეთი ასიმპტოტური გამოსახულება:

ლორენც-ფაქტორის დამოკიდებულება სიჩქარეზე.
სიჩქარე ლორენც-ფაქტორი შებრუნებული სიდიდე
0.000 1.000 1.000
0.100 1.005 0.995
0.200 1.021 0.980
0.300 1.048 0.954
0.400 1.091 0.917
0.500 1.155 0.866
0.600 1.250 0.800
0.700 1.400 0.714
0.800 1.667 0.600
0.866 2.000 0.500
0.900 2.294 0.436
0.990 7.089 0.141
0.999 22.366 0.045


  1. One universe, by Neil deGrasse Tyson, Charles Tsun-Chu Liu, and Robert Irion.
მოძიებულია „https://ka.wikipedia.org/wiki/ლორენც-ფაქტორი“-დან