ფერმას დიდი თეორემა

მასალა ვიკიპედიიდან — თავისუფალი ენციკლოპედია
გადასვლა: ნავიგაცია, ძიება

ფერმას ბოლო თეორემა (ხშირად ფერმას დიდი თეორემა) — თეორემა მათემატიკაში; მდგომარეობს შემდეგში:

არ არსებობს ისეთი a, b და y მთელი რიცხვები, რომელთათვისაც სრულდება ტოლობა , სადაც n > 2(n ორზე მეტი მთელი რიცხვია).

ფერმას ბოლო თეორემა მათემატიკის ერთ-ერთი ყველაზე პოპულარული თეორემაა. იგი ჩამოაყალიბა ფრანგმა მათემატიკოსმა პიერ ფერმამ დიოფანტეს წიგნ „არითმეტიკაზე“ მინაწერის სახით, რასაც დაუმატა, რომ მან გადაჭრა ეს ამოცანა, მხოლოდ ადგილის უქონლობის გამო ვერ ახერხებდა დამტკიცების იქვე დაწერას. დღესდღეობით ცნობილია, რომ ამოცანის ამოხსნა შეუძლებელი იყო ფერმის დროინდელი ელემენტარული მათემატიკის საშუალებით. ასე რომ, დამტკიცება, რომელზედაც ფერმა მიუთითებდა, სავარაუდოდ მცდარი იყო ან საერთოდ არ არსებობდა.

სრული სახით ამოცანა გადაიჭრა მხოლოდ 1994 წელს ენდრიუ უაილზის შრომებში. მანამდე სხვადასხვა დროს გადაჭრილი იქნა 600–ზე მეტო კერძო შემთხვევა. მაგალითად n = 4 შემთხვევისთვის ერთ-ერთი დამტკიცება გამოაქვეყნა თვითონ ფერმამ.

ამოცანის ჩამოყალიბების ელემენტარულმა სახემ განაპირობა მისი პოპულარობა არასპეციალისტებს შორის. სინამდვილეში კი ფერმას თეორემა უკავშირდება თანამედროვე მათემატიკაში მდგარ რამდენიმე უფრო ღრმა პრობლემას.

აღნიშვნისათვის n = 2 შემთხვევაში ტოლობას აქვს უამრავი ამონახსენი მთელ რიცხვებში.

იხილეთ აგრეთვე[რედაქტირება | წყაროს რედაქტირება]