თვლის სისტემა

თავისუფალი ქართულენოვანი ენციკლოპედია ვიკიპედიიდან
გადასვლა: ნავიგაცია, ძიება

თვლის სისტემა, ნუმერაცია, რიცხვების სახელწოდებისა და აღნიშვნის ხერხების ერთობლიობა. კონკრეტულ თვლის სისტემაში რიცხვის ჩასაწერად გამოიყენება სასრული ალფავიტი, რომელიც ციფრებისგან ან რაიმე სიმბოლოებისგან შედგება, ამასთან ყოველ ციფრს ან სიმბოლოს გარკვეული რაოდენობრივი ეკვივალენტი შეესაბამება. არსებობს თვლის პოზიციური და არაპოზიციური სისტემები.

პოზიციური სისტემა[რედაქტირება]

პოზიციურ სისტემაში ყოველი ციფრის წონა დამოკიდებულია მის პოზიციაზე იმ ციფრთა მიმდევრობაში, რომლებითაც კონკრეტული რიცხვი ჩაიწერება. ყოველ პოზიციურ სისტემას ახასიათებს მისი ბაზისი ანუ ფუძე. ესაა სიმბოლოების ის რაოდენობა რომელიც გამოიყენება რიცხვების ჩსაწერად. ფუძე შეიძლება იყოს ნებისმიერი ნატურალური რიცხვი ერთის ზემოთ.

პირველი პოზიციური სისტემა შეიქმნა ბაბილონში დაახლოებით 2500-2000 წლებში ჩვენს წელთაღრიცხვამდე. ამ სისტემის ფუძე იყო 60, ანუ მასში 60 ციფრი იყო, სამოცობითი სისტემა ასევე გამოიყენება საათის მექანიზმში. ჩვენში გავრცელებული ათობითი სისტემა ევროპაში ინდოეთიდან შემოვიდა, სადაც ის VI საუკუნემდე შეიქმნა. მასში 10 ციფრი გამოიყენება 0,1,2,3,4,5,6,7,8,9 ამასთან რიცხვი იწერებოდა მარჯვნიდან მარცხნივ. ამ სისტემაში ინფორმაციას შეიცავს არა მხოლოდ ციფრი არამედ მისი პოზიციაც რიცხვის ჩანაწერში. უკიდურესი მარჯვენა ციფრი აღნიშნავს ერთეულების რაოდენობას, შემდეგი - ათეულების და ა.შ. ციფრის პოზიციას მისი თანრიგი ეწოდება და ყოველ მომდევნო თანრიგის წონა წინაზე 10-ჯერ მეტია.

არაპოზიციური სისტემა[რედაქტირება]

არაპოზიციურ სისტემაში ციფრის წონა(რაოდენობრივი ეკვივალენტი) არაა დამოკიდებული მის პოზიციაზე(ადგილზე) რიცხვის ჩანაწერში. არაპოზიციური სისტემის მაგალითია რომაული სისტემა, რომელშიც სხვადასხვა მთელი რიცხვების ჩასაწერად გამოიყენება სიმბოლოები: I-1, V-5, X-10, L-50, C-100, D-500, M-1000 და ა.შ. ამ სისტემაში რიცხვი XXXIII (33) X ციფრის წონა ყოველ პოზიციაზე ერთნაირია და 10-ის ტოლია. არაპოზიციური სისტემები გამოიყენებოდა სხვა ქვეყნებშიც, მათ შორის საქართველოშიც, სადაც ციფრების შესატყვისი იყო ანბანის ასოები.

რიცხვთა წარმოდგენა პოზიციურ სისტემებში[რედაქტირება]

ნებისმიერი მთელი x რიცხვი პოზიციურ სისტემაში ფუძით p>1 წარმოიდგინება როგორც p რიცხვის ხარისხების წრფივი ცომბინაცია. მაგალითად, რიცხვი 357 ათობით სისტემაში წარმოიდგინება ასე: 357 ათობითში = 3*10 კვადრატზე + 5*10 პირველ ხარისხზე + 7*10 ნულოვან ხარისხზე ხოლო იგივე რიცხვი ცხრაობითში წარმოიდგინება ასე: 357 ათობითში= 4*9 კვადრატზე +3*9 პირველ ხარისხში + 6*9 ნულოვან ხარისხზე=436 ცხრაობითში