მაგნეტარი: განსხვავება გადახედვებს შორის

ნავიგაციაზე გადასვლა ძიებაზე გადასვლა
არ არის რედაქტირების რეზიუმე
სხვა ნეიტრონული ვარსკვლავებისგან განსხვავებით, მაგნეტარები უფრო ძლიერი მაგნიტური ველით და ღერძის გარშემო შედარებით სწრაფი ბრუნვით გამოირჩევიან. უმეტეს ნეიტრონულ ვარსკვლავებთან შედარებით, რომლებსაც ერთი შემობრუნებისთვის 1-დან 10 წამამდე სჭირდებათ, მაგნეტარი ერთ ბრუნს წამზე ნაკლებ დროში ახორციელებს, შესაბამისად, მისი ძლიერი მაგნიტური ველი გამა და რენტგენული გამოსხივებისთვის დამახასიათებელ ძლიერ დარტყმებს იძლევა. მაგნეტარის აქტიურობა ხანმოკლეა. მათი ძლიერი მაგნიტური ველები დაახლოებით 10 000 წლის შემდეგ კარგავენ ძალას, რის შემდეგაც აქტიური გამა და რენტგენის გამოყოფა წყდება. დღეისათვის, ირმის ნახტომში 30 მილიონზე მეტი არააქტიური მაგნეტარია დაფიქსირებული.
 
სწრაფი ბრუნვისგან გამოწველი ზედაპირის რყევები, განაპირობებს ძლიერ გამა-გამოსხივებასგამოსხივებებს განაპირობებს, რაც 1979, 1998 და 2004 წლებშია დაფიქსირებული.
 
== მაგნიტური ველი ==
მაგნეტარი ხასიათდება უკიდურესად ძლიერი მაგნიტური ველით, 108-დან 1011-მდე [[ტესლა (ერთეული)|ტესლა]] ერთეულით. რომელიც ასობით მილიონჯერ უფრო ძლიერია, ვიდრე ნებისმიერი ადამიანის მიერ შექმნილი მაგნიტი და კვადრილიონჯერ უფრო ძლიერი, ვიდრე დედამიწის მაგნიტური ველი. დედამიწას 30-დან 60-მდე მიკროტესლას სიმძლავრის გეომაგნიტური ველი, ხოლო ნეოდიმზე დაფუძნებული, იშვიათი მაგნიტი დაახლოებით 1.25 ტესლას სიმძლავრე გააჩნია. მაგნეტარის მაგნიტური ველი 1000 კმ-ის მანძილზეც ძლიერია, რომელიც სუბიექტის შემადგენელ ატომში, ელექტრონულ ღრუბელს ამახინჯებს, რაც სიცოცხლის ქიმიას ართულებს და შეუძლებელს ხდის. დედამიწიდან მთვარემდე ნახევარმანძილზე, ნებისმიერ აქტიურ მაგნეტარს, დედამიწაზე ყველა საკრედიტო ბარათის მაგნიტური ზოლიდან, ინფორმაცია შეუძლია ამოიღოს. 2010 წლის მონაცემებით, ისინი სამყაროს მასშტაბით აღმოჩენილი, ყველაზე მაგნიტური ობიექტებია.
 
== მაგნიტური ველის წარმოშობა ==
 
== ფორმირება ==
სუპერნოვას დროს, ვარსკვლავი კოლაფსირდება და ნეიტრონულ ვარსკვლავად გარდაიქმნება, რომლის მაგნიტური ველი დრამატულად ძლიერდება. წრფივხაზოვანი განზომილების განახევრება, მაგნიტურ ველს ოთხჯერ ზრდის და აძლიერებს. დუნკანმა და ტომპსონმა დაადგინეს, რომ როდესაც ახლად ჩამოყალიბებული ნეიტრონული ვარსკვლავის ბრუნვა, ტემპერატურა და მაგნიტური ველი მარჯვენა მხარეს მერყეობს, დინამო მექანიზმმა, შესაძლოა სითბოს და ბრუნვის ენერგია, მაგნიტურ დიდ ენერგიად გარდაქმნას და უკვე არსებული 108 ტესლა, 1011 ტესლა (1015 გაუსი) სიმძლავრეზე მეტად გაზარდოს, რისი საფუძველიც მაგნეტარის წარმოშობაა. ყოველი ათი სუპერვასსუპერნოვასვას ნარჩენიდან ერთი მაგნეტარია, ვიდრე სტანდარტული ნეიტრონული ვარსკვლავი ან პულსარი.
 
== აღმოჩენა ==
1979 წლის 5 მარტს, ორი საბჭოთა ზონდის, ვენერა 11 და 12-ის ვენერას ატმოსფეროში წარმატებით ჩაშვების შემდეგ, რომლებმაც გამა-გამოსხივების რადიაციით კურსი შეიცვალეს, სტანდარტული დროით დაახლოებით 10:51-ზე — ამ კონტაქტის შემდეგ, რადიაციის მხრივ ორივე ზონდის მონაცემებმა კითხვები გააჩინა, როგორც ნორმალური 100, ასევე 200 000-ზე მეტი დარტყმითი ტალღიდან წამში, რომლებიც მხოლოდ მილიწამს გრძელდებოდა. გამა-გამოსხივების სწრაფი გავრცელების შემდეგ, თერთმეტი წამის ინტერვალით ჰელიოს 2, ნასა- ს ზონდი, რომელიც მზის გარშემო ორბიტაზე მოძრაობდა, ძლიერი რადიაციის ზემოქმედების ქვეშ აღმოჩნდა. ტალღა მალევე ვენერას ორბიტაზე მოძრავი პიონერის დეტექტორებმა დააფიქსირეს. რამდენიმე წამში დედამიწამ მიიღორადიაციული რადიაციულიდარტყმა ტალღამიიღო, რაც სამმა აშშ-ს თავდაცვის დეპარტამენტის, ველის თანამგზავრებმა, საბჭოთა სამეცნიერო კვლევითი თანამგზავრული პროგრამის, პროგნოზის შვიდმა თანამგზავრმა, და აინშტაინის ობსერვატორიამ დააფიქსირეს. ტალღა, ბოლოს კი კომეტების საერთაშორისო მკვლევარსმკვლევარსაც მიწვდა, რომელიც დედამიწის მაგნიტურ ველს და მზის ქარებს სწავლობდა. ეს აფეთქება, მანამდე დაფიქსირებულთაგან, 100-ჯერ უფრო ინტენსიურს წარმოადგენდა. იმის გამო, რომ გამა-გამოსხივება სინათლის სისწრაფით მოძრაობს და ტალღა რამდენიმე შორეულმა კოსმოსურმა აპარატმა დააფიქსირა, იმპულსის დრო, 2ორი არკწამის სიზუსტით განისაზღვრა. წყაროს მხარეს შეესაბამება [[მაგელანის დიდი ნისლეული|მაგელანის დიდ ნიშლეულში]] მდებარე ვარსკვლავი, რომელიც ჩვენს წელთაღრიცხვამდე, დაახლოებით 5000 წლის წინ სუპერნოვად აფეთქდა. მოვლენას [[GRB 790305b]] ეწოდა.
209

რედაქტირება

სანავიგაციო მენიუ