ფერმას დიდი თეორემა: განსხვავება გადახედვებს შორის

ნავიგაციაზე გადასვლა ძიებაზე გადასვლა
არ არის რედაქტირების რეზიუმე
:არ არსებობს ისეთი ''a'', ''b'' და ''y'' [[მთელი რიცხვი|მთელი რიცხვები]], რომელთათვისაც სრულდება ტოლობა <math>a^n+b^n=y^n</math>, სადაც ''n > 2''(n ორზე მეტი მთელი რიცხვია).
 
ფერმას ბოლო თეორემა ალბათ მათემატიკის ერთ-ერთი ყველაზე პოპულარული თეორემაა. იგი ჩამოაყალიბა ფრანგმა მათემატიკოსმა [[ფერმა, პიერ|პიერ ფერმამფერმა]] [[დიოფანტე]]ს წიგნ "არითმეტიკაზე"„არითმეტიკაზე“ მინაწერის სახით, რასაც დაუმატა, რომ მან გადაჭრა ეს ამოცანა, მხოლოდ ადგილის უქონლობის გამო ვერ ახერხებდა დამტკიცების იქვე დაწერას. დღესდღეობით ცნობილია, რომ ამოცანის ამოხსნა შეუძლებელი იყო ფერმის დროინდელი ელემენტარული მათემატიკის საშუალებით. ასე რომ, დამტკიცება, რომელზედაც ფერმა მიუთითებდა, სავარაუდოდ მცდარი იყო ან საერთოდ არ არსებობდა.
 
სრული სახით ამოცანა გადაიჭრა მხოლოდ [[1994]] წელს [[ენდრიუ უაილზი]]ს შრომებში. მანამდე სხვადასხვა დროს გადაჭრილი იქნა 600–ზე მეტო კერძო შემთხვევა. მაგალითად ''n = 4'' შემთხვევისთვის ერთ-ერთი დამტკიცება გამოაქვეყნა თვითონ ფერმამ.

სანავიგაციო მენიუ