შინაარსზე გადასვლა

საკუთრივი მნიშვნელობა

მასალა ვიკიპედიიდან — თავისუფალი ენციკლოპედია

წრფივ ალგებრაში, რაიმე კვადრატული მატრიცის საკუთრივი ვექტორი ეწოდება ისეთ არა-ნულოვან ვექტორს, რომლის მატრიცაზე გამრავლებით მიიღება -ის კოლინეარული ვექტორი, ანუ იგივე ვექტორი, ოღონდ გამრავლებული რაიმე სკალარზე :

აღნიშნულ სკალარს ეწოდება საკუთრივი მნიშვნელობა.

უმრავლესობა ვექტორებისა იცვლის მიმართულებას, როცა მათ რაიმე მატრიცაზე ამრავლებენ. თუმცა, მოცემული მატრიცისთვის შესაძლებელია მოძებნილ იქნას ისეთი ვექტორები, რომელთა მიმართულება ამ მატრიცაზე გამრავლებით არ შეიცვლება და გაიზრდება/შემცირდება მხოლოდ მასშტაბი. მაგალითისთვის განვიხილოთ შემდეგი მატრიცა:

.

ამ მატრიცის გამრავლებით ვექტორზე

მიიღება ვექტორი

,

რომელიც მასშტაბით "სამჯერ მეტია" -ზე: . მაშასადამე, წარმოადგენს მატრიცის საკუთრივ ვექტორს, ხოლო 3-იანი კი მატრიცის საკუთრივი მნიშვნელობაა.

შევნიშნოთ, რომ თუ იგიური მატრიცაა, მაშინ ნებისმიერი ვექტორი მის საკუთრივს წარმოადგენს, რადგან , ანუ .

საკუთრივი მნიშვნელობების თვისებები

[რედაქტირება | წყაროს რედაქტირება]

დადებითად განსაზღვრული მატრიცის საკუთრივი მნიშვნელობები დადებითია.

მატრიცის ახარისხებისას მისი საკუთრივი ვექტორები უცვლელი რჩება, ხოლო საკუთრივი მნიშვნელობები კი ახარისხდება.

საკუთრივი მნიშვნელობებისა და ვექტორების გამოთვლა

[რედაქტირება | წყაროს რედაქტირება]

გვაქვს, რომ

საიდანაც, თუ ამონახსნი , მატრიცა შეუქცევადია და მისი დეტერმინანტი

.

ამ უკანასკნელ განტოლებას მახასიათებელი განტოლება ეწოდება და მას გააჩნია იმდენი ამონახსნი ( საკუთრივი მნიშვნელობა), რამდენიცაა მატრიცის რიგი. თითოეული -თვის შესაძლებელია ნაპოვნი იქნეს შესაბამისი საკუთრივი ვექტორი შემდეგი განტოლების ამოხსნით:

.

ვიპოვოთ

მატრიცის ყველა საკუთრივი მნიშვნელობა და ვექტორი. ჩავწეროთ მახასიათებელი განტოლება:

.

ამ კვადრატული განტოლების ფესვებია და . მოძიებული საკუთრივი მნიშვნელობებისთვის ვიპოვოთ შესაბამისი და საკუთრივი ვექტორები:

საიდანაც ერთ-ერთი ამონახსნი იქნება

.

ბუნებრივია, საკუთრივი ვექტორი იქნება ასევე ნებისმიერი ვექტორი ვექტორიც, სადაც რაიმე არა-ნულოვანი სკალარია.

ანალოგიურად,

.

ბუნებრივია, საკუთრივი ვექტორი იქნება ასევე ნებისმიერი ვექტორი ვექტორიც, სადაც რაიმე არა-ნულოვანი სკალარია.